skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gessel, Ira M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Given a permutation statistic$$\operatorname {\mathrm {st}}$$, define its inverse statistic$$\operatorname {\mathrm {ist}}$$by. We give a general approach, based on the theory of symmetric functions, for finding the joint distribution of$$\operatorname {\mathrm {st}}_{1}$$and$$\operatorname {\mathrm {ist}}_{2}$$whenever$$\operatorname {\mathrm {st}}_{1}$$and$$\operatorname {\mathrm {st}}_{2}$$are descent statistics: permutation statistics that depend only on the descent composition. We apply this method to a number of descent statistics, including the descent number, the peak number, the left peak number, the number of up-down runs and the major index. Perhaps surprisingly, in many cases the polynomial giving the joint distribution of$$\operatorname {\mathrm {st}}_{1}$$and$$\operatorname {\mathrm {ist}}_{2}$$can be expressed as a simple sum involving products of the polynomials giving the (individual) distributions of$$\operatorname {\mathrm {st}}_{1}$$and$$\operatorname {\mathrm {st}}_{2}$$. Our work leads to a rederivation of Stanley’s generating function for doubly alternating permutations, as well as several conjectures concerning real-rootedness and$$\gamma $$-positivity. 
    more » « less
    Free, publicly-accessible full text available November 7, 2025